True Elasticity in Multi-Tenant
Data-Intensive Compute Clusters

Sriram Rao
CISL @ Microsoft
Oct. 15 2012



Joint Work With...

* Ganesh Ananthanarayanan, lon Stoica (UC
Berkeley)

* Chris Douglas, Raghu Ramakrishnan
(Colleagues at Yahoo and now at Microsoft)

* Work started at Yahoo! Labs (and being
continued in CISL@Microsoft)



Background

* “Big data” processing using compute
frameworks in large clusters commonplace

— Map-Reduce (Google), Cosmos (Bing), Hadoop
(mostly everyone else)

* For economies of scale clusters are multi-
tenanted

* Sharing of cluster resources (e.g., CPU)
implemented via queues

— Frameworks do not support preemption



Multi-tenanted Cluster

QO

Q
)

Rack 0

BRe |

Rack N

o'e

1 e

B 8

Bn s

am | '.e

8 ane

288

118

am aa

aaena

8.

Idle slots, but demand from
Q,, Q, has priority

]i

2

ZG uaranteedCapacity(Q,) = ClusterCapacity




Idle Slots: To Use Or Not

* Compute frameworks do not support pre-
emption
— Task is the finest granularity for execution

* Sharing cluster resources:

— In anticipation of future demand, leave idle slots
fallow (Yahoo!)

* Cluster utilization is ~70%
— Tasks queued even though 30% of cluster is idle

— Allocate idle slots to jobs, but kill tasks to enforce
SLA’s (Facebook, Bing)

e Cluster utilization is 100%, but 21% tasks are killed



Problem Statement

 Compute frameworks force cluster operators
to tradeoff utilization and efficiency:
— Yahoo: 70% util, 100% efficiency
— Bing: 100% util, 79% efficiency

* This matters...

— In clusters of 1000’s of nodes inability to use lots
of nodes wastes SSS

— Cloud provider: Margins are low and efficiency is
paramount



Our Work

Amoeba, a lightweight mechanism for enabling
elasticity in data-intensive compute frameworks

— Add preemption via a “checkpoint/restart”

mechanism that saves task output and avoids wasting
computation

Resource consumption of jobs is elastic

— Scale up/down usage based on cluster resource
availability

Preliminary results show that Amoeba can speed
up jobs by 33%



Why Amoeba?

 Can’t we just use “small” tasks?

— Disk seeks, per-task scheduling overheads affect
perf

 Can’t we just use “uniform” size tasks?
— Little correlation between task’s input vs duration
 Can’t we use OS preemption mechanisms?

— Paging/swapping process state to disk is a no-no
e Task heap sizes are in multiple GB'’s
* Paging => Reboot the machine!



Amoeba Overview

e |dea: Construct checkpoint for task execution
by identifying “safe” point
— Terminate task execution at safe point
— Spawn a new task for the remaining work

e Safe point provides mechanism for
implementing preemption



Preemption for M/R

* [Dean’04] M/R programming model is based on
keys
— Map(k, v) =>list(k’, v’)
— Reduce(k, list(v)) =>»list(v’)

» Safe point for an M/R task: Key boundary

— Checkpoint task execution at a key boundary
* Running task after saving state

— Resume task execution at the next key
task spawned for the remaining work

e Store key as memento of task execution
— Lightweight mechanism



ResourceManager

({*ohuv.n 1

0. Heartbeat(Req;)

JobManager

Ky Vo, -, Vol
Ki [Vo, ..., V]
Ky (Vo - Vi)
K [Vo, -, V]
K., Vo, ) Vin]




ResourceManager

(x)asparay ‘1

2.Heartbeat(Kg
JobManager

Ky [Vo, o, Vil
K; [Vo, ) V]
Kg (Vo ) Vi)
K Vo, V]
K, [Vo, =, Vin]




Amoeba Prototype

* Prototype implementation using Sailfish
(SOCC’12)
— Sailfish is based on Hadoop 1.x

— Prototype is released to open source
* http://code.google.com/p/sailfish

* Preemption is simplistic

— When a job manager is asked to release a slot, it
chooses a task arbitrarily


http://code.google.com/p/sailfish

Elasticity With Amoeba

M Long-running Job M Periodic Job

100

90

o
o0

o
~

o o o
O N <

uonezinn %

o
o

o
(o)

10

L8T9
9409
9969
9489
LS
9€99
§¢Ss
STvS
66¢S
€819
5909
1374414
S18Y
L69Y
€84
L9y
[4<33%
|2 Y4%
780v
798¢
TSLE
7€9€E
6TSE
ove
LLCE
Tctre
868¢
9tLe
06ve
LLET
L8TC
690¢
T1S61
0TLT
€t
1242
€t
T80T
T44

€11

Time (s)



33% Improvement

Preempt

Kill

Killing Tasks vs Preemption

90

o o o o o o o
0 ~ (o] wn < o ~N

100
10

919|dwo) %

09s8
GGE8
0ST8
1474
ovLL
SESL
0€eL
SCTL
0¢69
ST/49
0TS9
S0€9
0019
5689
0695
S87S
08¢s
S/.0S
048y
S99
09y
SGey
0L0v
S/8¢
049¢€
SoveE
09¢e
S50¢€
058¢
S¥9¢
ovve
144
0€0c¢
S¢81
0791
STVl
oTct
6¢0T
o8

S€9

(013%

144

Time (s)



* |dea seems promising

e What does Amoeba enable?



Preemption <-> Scheduling

Scheduling algos for compute frameworks do not
factor in pre-emption

— Slots are allocated to tasks and are held until task
completes

Amoeba makes it possible to modify scheduling
decisions
— Migrate a running task to enable locality for a new task

— “De-frag” a cluster by migrating tasks to create “bigger
slots

Scheduling in the context of YARN is on-going work



(Some) Applications of Elasticity

* Handle (computation) skew

— |If task is taking too long to finish, checkpoint and then
spawn multiple tasks to handle the remaining work

* Improve efficiency of speculative execution
— Now: Launch multiple tasks and pick the winner

— .Next: Adjust end-point of running task and launch
new task for what is left

* |n cloud settings, elasticity enables effective use
of “spot instances”

— Checkpoint work done by tasks running on spot
instances



On-going Work



On-going Work

* Build Amoeba in the context of YARN (Hadoop
2.X)

— http://issues.apache.org/jira/browse/MAPREDUC
E-4584

— http://issues.apache.org/jira/browse/YARN-45

 Work started at Yahoo labs, is now being
continued in CISL at Microsoft

— We intend to release our work to open source



http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/YARN-45
http://issues.apache.org/jira/browse/YARN-45
http://issues.apache.org/jira/browse/YARN-45

