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Joint Work With… 

• Ganesh Ananthanarayanan, Ion Stoica (UC 
Berkeley) 

 

• Chris Douglas, Raghu Ramakrishnan 
(Colleagues at Yahoo and now at Microsoft) 

 

• Work started at Yahoo! Labs (and being 
continued in CISL@Microsoft) 



Background 

• “Big data” processing using compute 
frameworks in large clusters commonplace 
– Map-Reduce (Google), Cosmos (Bing), Hadoop 

(mostly everyone else) 

• For economies of scale clusters are multi-
tenanted 

• Sharing of cluster resources (e.g., CPU) 
implemented via queues 
– Frameworks do not support preemption 
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Idle Slots: To Use Or Not 

• Compute frameworks do not support pre-
emption 
– Task is the finest granularity for execution 

• Sharing cluster resources: 
– In anticipation of future demand, leave idle slots 

fallow (Yahoo!) 
• Cluster utilization is ~70% 

– Tasks queued even though 30% of cluster is idle 

– Allocate idle slots to jobs, but kill tasks to enforce 
SLA’s (Facebook, Bing) 
• Cluster utilization is 100%, but 21% tasks are killed 

 

 



Problem Statement 

• Compute frameworks force cluster operators 
to tradeoff utilization and efficiency: 
– Yahoo: 70% util, 100% efficiency 

– Bing: 100% util, 79% efficiency 

• This matters… 
– In clusters of 1000’s of nodes inability to use lots 

of nodes wastes $$$ 

– Cloud provider: Margins are low and efficiency is 
paramount 

 

 



Our Work 

• Amoeba, a lightweight mechanism for enabling 
elasticity in data-intensive compute frameworks 
– Add preemption via a “checkpoint/restart” 

mechanism that saves task output and avoids wasting 
computation 

• Resource consumption of jobs is elastic 
– Scale up/down usage based on cluster resource 

availability 

• Preliminary results show that Amoeba can speed 
up jobs by 33% 

 



Why Amoeba? 

• Can’t we just use “small” tasks?  
– Disk seeks, per-task scheduling overheads affect 

perf 

• Can’t we just use “uniform” size tasks? 
– Little correlation between task’s input vs duration 

• Can’t we use OS preemption mechanisms? 
– Paging/swapping process state to disk is a no-no 

• Task heap sizes are in multiple GB’s 

• Paging => Reboot the machine! 

 

 

 



Amoeba Overview 

• Idea: Construct checkpoint for task execution 
by identifying “safe” point 

– Terminate task execution at safe point 

– Spawn a new task for the remaining work 

• Safe point provides mechanism for 
implementing preemption 



Preemption for M/R 

• [Dean’04] M/R programming model is based on 
keys 
– Map(k, v) list(k’, v’) 
– Reduce(k, list(v)) list(v’) 

• Safe point for an M/R task: Key boundary 
– Checkpoint task execution at a key boundary 

• Running task exits after saving state 

– Resume task execution at the next key 
• New task spawned for the remaining work 

• Store key as memento of task execution 
– Lightweight mechanism 
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Amoeba Prototype 

• Prototype implementation using Sailfish 
(SOCC’12) 

– Sailfish is based on Hadoop 1.x 

– Prototype is released to open source  

• http://code.google.com/p/sailfish  

• Preemption is simplistic 

– When a job manager is asked to release a slot, it 
chooses a task arbitrarily 

http://code.google.com/p/sailfish


Elasticity With Amoeba 
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Killing Tasks vs Preemption 
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• Idea seems promising 

 

• What does Amoeba enable? 



Preemption <-> Scheduling 

• Scheduling algos for compute frameworks do not 
factor in pre-emption 
– Slots are allocated to tasks and are held until task 

completes 

• Amoeba makes it possible to modify scheduling 
decisions  
– Migrate a running task to enable locality for a new task 

– “De-frag” a cluster by migrating tasks to create “bigger 
slots 

• Scheduling in the context of YARN is on-going work 



(Some) Applications of Elasticity 

• Handle (computation) skew 
– If task is taking too long to finish, checkpoint and then 

spawn multiple tasks to handle the remaining work  

• Improve efficiency of speculative execution 
– Now: Launch multiple tasks and pick the winner 
– .Next: Adjust end-point of running task and launch 

new task for what is left 

• In cloud settings, elasticity enables effective use 
of “spot instances” 
– Checkpoint work done by tasks running on spot 

instances 



On-going Work 

 



On-going Work 

• Build Amoeba in the context of YARN (Hadoop 
2.x) 

– http://issues.apache.org/jira/browse/MAPREDUC
E-4584  

– http://issues.apache.org/jira/browse/YARN-45  

• Work started at Yahoo labs, is now being 
continued in CISL at Microsoft 

– We intend to release our work to open source  
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