
True Elasticity in Multi-Tenant
Data-Intensive Compute Clusters

Sriram Rao

CISL @ Microsoft

Oct. 15 2012

Joint Work With…

• Ganesh Ananthanarayanan, Ion Stoica (UC
Berkeley)

• Chris Douglas, Raghu Ramakrishnan
(Colleagues at Yahoo and now at Microsoft)

• Work started at Yahoo! Labs (and being
continued in CISL@Microsoft)

Background

• “Big data” processing using compute
frameworks in large clusters commonplace
– Map-Reduce (Google), Cosmos (Bing), Hadoop

(mostly everyone else)

• For economies of scale clusters are multi-
tenanted

• Sharing of cluster resources (e.g., CPU)
implemented via queues
– Frameworks do not support preemption

...

Job 0-1

x600

Job 0-0

x1200

Job 1-1

x600

Job 1-0

x800

Rack 0 Rack N

Q0 Q1 Q2



GuaranteedCapacity(Qi) ClusterCapacity
i



Q0

Q1

Q2

Idle slots, but demand from
Q0, Q2 has priority

Multi-tenanted Cluster

Idle Slots: To Use Or Not

• Compute frameworks do not support pre-
emption
– Task is the finest granularity for execution

• Sharing cluster resources:
– In anticipation of future demand, leave idle slots

fallow (Yahoo!)
• Cluster utilization is ~70%

– Tasks queued even though 30% of cluster is idle

– Allocate idle slots to jobs, but kill tasks to enforce
SLA’s (Facebook, Bing)
• Cluster utilization is 100%, but 21% tasks are killed

Problem Statement

• Compute frameworks force cluster operators
to tradeoff utilization and efficiency:
– Yahoo: 70% util, 100% efficiency

– Bing: 100% util, 79% efficiency

• This matters…
– In clusters of 1000’s of nodes inability to use lots

of nodes wastes $$$

– Cloud provider: Margins are low and efficiency is
paramount

Our Work

• Amoeba, a lightweight mechanism for enabling
elasticity in data-intensive compute frameworks
– Add preemption via a “checkpoint/restart”

mechanism that saves task output and avoids wasting
computation

• Resource consumption of jobs is elastic
– Scale up/down usage based on cluster resource

availability

• Preliminary results show that Amoeba can speed
up jobs by 33%

Why Amoeba?

• Can’t we just use “small” tasks?
– Disk seeks, per-task scheduling overheads affect

perf

• Can’t we just use “uniform” size tasks?
– Little correlation between task’s input vs duration

• Can’t we use OS preemption mechanisms?
– Paging/swapping process state to disk is a no-no

• Task heap sizes are in multiple GB’s

• Paging => Reboot the machine!

Amoeba Overview

• Idea: Construct checkpoint for task execution
by identifying “safe” point

– Terminate task execution at safe point

– Spawn a new task for the remaining work

• Safe point provides mechanism for
implementing preemption

Preemption for M/R

• [Dean’04] M/R programming model is based on
keys
– Map(k, v) list(k’, v’)
– Reduce(k, list(v)) list(v’)

• Safe point for an M/R task: Key boundary
– Checkpoint task execution at a key boundary

• Running task exits after saving state

– Resume task execution at the next key
• New task spawned for the remaining work

• Store key as memento of task execution
– Lightweight mechanism

ResourceManager

JobManager

𝑡𝑎𝑠𝑘0

𝑡𝑎𝑠𝑘𝑖

𝑡𝑎𝑠𝑘𝑛

0
.𝐻

𝑒𝑎
𝑟𝑡
𝑏
𝑒𝑎
𝑡(
𝑅
𝑒
𝑞
𝑖)

1
.𝐺
𝑟𝑎
𝑛
𝑡({𝐶

𝑥 })

2. 𝑆𝑡𝑎𝑟𝑡([𝐾𝑖 , 𝐾𝑗)) 3.𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡(𝐾𝑖)

𝐾𝛼 [𝑉0, … , 𝑉𝑛]

𝐾𝜔 [𝑉0, … , 𝑉𝑚]

𝐾𝑖 [𝑉0, … , 𝑉𝑥]

𝐾𝑗 [𝑉0, … , 𝑉𝑦]

𝐾𝛽 [𝑉0, … , 𝑉𝑛] 4. 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡(𝐾𝛽)

ResourceManager

JobManager

𝑡𝑎𝑠𝑘0

𝑡𝑎𝑠𝑘𝑖

𝑡𝑎𝑠𝑘𝑛

1
.𝑅
𝑒
𝑙𝑒
𝑎
𝑠𝑒
(𝑥
)

𝐾𝛼 [𝑉0, … , 𝑉𝑛]

𝐾𝜔 [𝑉0, … , 𝑉𝑚]

𝐾𝑖 [𝑉0, … , 𝑉𝑥]

𝐾𝑗 [𝑉0, … , 𝑉𝑦]

𝐾𝛽 [𝑉0, … , 𝑉𝑛]
2. 𝐻𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡(𝐾𝛽)

3. 𝐸𝑥𝑖𝑡

𝑡𝑎𝑠𝑘𝑛+1

Amoeba Prototype

• Prototype implementation using Sailfish
(SOCC’12)

– Sailfish is based on Hadoop 1.x

– Prototype is released to open source

• http://code.google.com/p/sailfish

• Preemption is simplistic

– When a job manager is asked to release a slot, it
chooses a task arbitrarily

http://code.google.com/p/sailfish

Elasticity With Amoeba

0

10

20

30

40

50

60

70

80

90

100

0

1
1

3

2
2

5

1
0

8
1

1
2

2
3

1
3

4
4

1
4

6
3

1
7

1
0

1
9

5
1

2
0

6
9

2
1

8
7

2
3

7
7

2
4

9
0

2
7

2
6

2
8

9
8

3
1

2
1

3
2

7
7

3
4

0
2

3
5

1
9

3
6

3
4

3
7

5
1

3
8

6
4

4
0

8
4

4
2

3
1

4
3

5
2

4
4

6
7

4
5

8
3

4
6

9
7

4
8

1
5

4
9

4
3

5
0

6
5

5
1

8
3

5
2

9
9

5
4

1
5

5
5

2
5

5
6

3
6

5
7

4
6

5
8

5
6

5
9

6
6

6
0

7
6

6
1

8
7

%
 U

ti
liz

at
io

n

Time (s)

Long-running Job Periodic Job

Killing Tasks vs Preemption

0

10

20

30

40

50

60

70

80

90

100

0
2

2
5

43
0

6
3

5
8

4
0

1
0

2
9

1
2

1
0

1
4

1
5

1
6

2
0

1
8

2
5

2
0

3
0

2
2

3
5

2
4

4
0

2
6

4
5

2
8

5
0

3
0

5
5

3
2

6
0

3
4

6
5

3
6

7
0

3
8

7
5

40
70

4
2

5
5

4
4

6
0

4
6

6
5

4
8

7
0

5
0

7
5

5
2

8
0

5
4

8
5

5
6

9
0

5
8

9
5

6
1

0
0

6
3

0
5

6
5

1
0

6
7

1
5

6
9

2
0

7
1

2
5

7
3

3
0

7
5

3
5

7
7

4
0

7
9

4
5

8
1

5
0

8
3

5
5

8
5

6
0

%
 C

o
m

p
le

te

Time (s)

Kill Preempt
33% Improvement

• Idea seems promising

• What does Amoeba enable?

Preemption <-> Scheduling

• Scheduling algos for compute frameworks do not
factor in pre-emption
– Slots are allocated to tasks and are held until task

completes

• Amoeba makes it possible to modify scheduling
decisions
– Migrate a running task to enable locality for a new task

– “De-frag” a cluster by migrating tasks to create “bigger
slots

• Scheduling in the context of YARN is on-going work

(Some) Applications of Elasticity

• Handle (computation) skew
– If task is taking too long to finish, checkpoint and then

spawn multiple tasks to handle the remaining work

• Improve efficiency of speculative execution
– Now: Launch multiple tasks and pick the winner
– .Next: Adjust end-point of running task and launch

new task for what is left

• In cloud settings, elasticity enables effective use
of “spot instances”
– Checkpoint work done by tasks running on spot

instances

On-going Work

On-going Work

• Build Amoeba in the context of YARN (Hadoop
2.x)

– http://issues.apache.org/jira/browse/MAPREDUC
E-4584

– http://issues.apache.org/jira/browse/YARN-45

• Work started at Yahoo labs, is now being
continued in CISL at Microsoft

– We intend to release our work to open source

http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/MAPREDUCE-4584
http://issues.apache.org/jira/browse/YARN-45
http://issues.apache.org/jira/browse/YARN-45
http://issues.apache.org/jira/browse/YARN-45

